IOLIRNAT OF COMPHEATIONAL ravsies TS, 270 287 (1990

Spline Approximation of “Effective” Potentials under Periodic
Boundary Conditions

R. T. Farouk! aND S. HamaGuUCIT

FBM Thomus J. Watsen Research Center, P.O. Box 218, Yorktown Heighis, New York 10598

Received May 12, 1993; in revised form December 16. 19930 accepted May 19, 1994

The use of spline functions to approximate the “effective” inter-
particle potentials that result from taking into account all image
particles in periadic-boundary-condition Monte Carlo or molecular
dynamics simulations is described. Such approximations are intrin-
sically very "smooth,” easy to construct, relatively inexpensive 1o
evaluate, and can provide a high degree of accuracy. The asymptotic
properties of systems governed by long-range interactions may thus
be determined using relatively small particle numbers. A number of
implemeaentation issues are discussed in detail, including the choice
of end conditions, economical storage of the spline coefficients,
conversion to B-spline form, and cofficient ecvaluation procedures,
Applied to the problem of tocating the meiting temperature T, of
a Yukawa system by means of molecular dynamics simulations, we
observe values for T, that are virtually independent of the particle
number N if the pair potential includes the spline correction term
and N = 250, whereas using only the "minimum image” method
gives T, values that systematically decrease and attain the asymp-
totic value only for N = 5000. @ 1994 Academic Press, Inc.

L INTRODUCTION

The use of periodic boundary conditions is a standard means
of eliminating “*surface effects™ | 1] in Monte Carlo or molecu-
lar dynamics calculations of the bulk properties of systems of
particles whose interactions are describable by a scalar potential
function ¢(r), where ris the interparticle distance. If the simula-
tion empioys N particles in a cubical voluine V = L’ of side
., one is usually inferested in asymptotic propertics of the
system in the limit N — o0 and L — o such that the mean
density N/V reimains constant,

Ideally, using periodic boundary conditions in three dimen-
sions amounts Lo substituting, in lieu of the potential ¢(r), the
function defined over the interior of V by the infinite lattice sum

rry = 2: :[;({r -+ nl|). (1)

where the components (A, w, v) of the vector n assume ail
integer values. For each particle i = |, ..., Nin V, the “‘effec-
tive™" potential (1) deseribes the interaction with another particle

J (#i} in V at relative position r = r; — r;, and with every

perfodic image of the latter when all space is imagined to be
occupied by identical contiguous replicas of V.

Note that although the basic pair potential ¢ is spherically
symmetric—depending only on the magnitude of the separation
vector r—the function @ has only cubical symmetry; it depends
explicitty on the direction of r.

For short-range potentials, such as the familiar Lennard—
Jones form

for which it is customary to ignore all interactions at separations
greater than a few times o, a drastic simplification of (1) is
usually adequate. Naimely. it is generally possible to take N
such that ¢/L <€ 1, and the sum (1) is then donknated by a
single term, for which —1 = A, u, v = +1. Geometrically,
this amounts to surrounding the basic volume V by 26 copies
V' of itself, each having a face, edge, or vertex in common
with V. Every particle i = 1, ..., ¥ in V then interacts with
particle j {(#i) in V or with the image of j in one of the duplicate
volumes V', according to whichever is nearest. Introduced by
Metropolis et al. {2} in Monte Carlto equation-of-state calcula-
tions, this has come to be known as the minimum image method.

For simplicity, we shall focus on potentials () of *‘interme-
diate range,”’” for which the sum (1) is absolutely convergent,
but one must nevertheless include many terms for satisfactory
accuracy at vajues of N that will yield reasonable simulation
times. As a typical example of such potentials, we cite the
Yukawa or screened-Coutomb form

r) o %cxp(—kr). (2)

for which the sum (1) is absolutely convergent when & >
{we assume that kL is not large compared to unity, i.e., the
minimum 1mage method is inadequate). The Yukawa form (2)
is the self-consistent pair potential [3] for the interaction of
charged particles in colloidal or plasma suspensions, under the
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SPLINE APPROXIMATION

Debye—Hiickel approxintation applied to a background electro-
lyte or plasma medium of fixed temperature and mean density.
It has been widely used to investigate the thermodynamic be-
havior of such systems [4~13].

The procedures described below are not limited to exponen-
tlally decaying potentials, however, and may be employed to
approximate any smooth, nonsingular, cubically symmetric
functiop that is expensive 1o evaluate. With the classical *“one-
component plasma’’ {OCP), for example, expression (1) in-
cludes contributions from discrete ions interacting through a
bare Coulomb potential ¢{r) o< 77! and a strictly uniform back-
ground of electrons giving overall charge neutrality. The sum
(1) is then only conditionally convergent, and one appeals to
the Ewald method [14, 15] to re-write it as the union of a
spherically symmetric term and an infinite sum that con-
verges rapidly:

(e o erfc(VariLy 1Z
v

3)

n#0

s [erfc(ﬁh + nLl/L)

r+ ni|

+

exp(—7'n|?) cos(27n - r/L)}
amP L ‘

The complementary error, exponential, and trigonometric func-
tions make a direct summation for the cubically symmetric
term in ®(r) impractical in simulations, and many methods
have been proposed to approximate it by forms that can be
efficiently evaluated (see Section 2 below). We have used the
spline approximation method in molecular dynamics simula-
tions [16] to estimate the first anharmonic coefficiemt of the
crystalline OCP energy, obtaining good agreement with recent
latiice-dynamics studies [17, 18],

The plan of this paper is as follows. Section 2 briefly reviews
related work on the approximation of complicated *‘effective”
potentials by forms that are cheaper to evaluate. In Section 3
we develop the technique used here, namely, interpolation of
a three-dimensional grid of sampled values by a cubic C? tensor-
product spline function. The cardinal basis is the natural form
in which to express this interpolant, requiring only the solution
of tridiagenal linear systems and allowing easy incorporation
of end conditions. Section 4 describes the conversion of the
interpolant to B-spline representation—an essential step in fa-
cilitating its efficient evaluation. Finally, Section 5 presents
empirical data on the accuracy achievable in practice and the
expense of using full periodic boundary conditions as compared
to the minimum image method, while Section 6 summarizes
our results and makes some concluding remarks.

The methods discussed below are well-established in the
mathematical theory of spline functions. However, they are not
readily accessible without a substantial investment of titne on
the specialist literature of that subject. Qur purpose here is to
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present a relatively simple and self-contained account, confined
to the appiication at hand, that will encourage more widespread
use of spline approximations for the periodic-boundary correc-
tion term in Monte Carlo and molecular dynamics simulations.
As indicated in Section 2 below, there appear to be widespread
misconceptions within the computational physics literature as
to what constitutes a ““spline”” function.

2. APPROXIMATION OF POTENTIALS

Although the approximation of complicated “‘effective” po-
tentials is a key ingredient of condensed-matter simulations,
this problem appears to have received only anecdotal treatment
in the literature. A simple scheme [1] for univariate (i.e., spheri-
cally symmetric) potentials involving many terms—see, for
example, [19]-—employs interpolation between pre-computed
values in a look-up table. Andrea, Swope, and Andersen [20]
described a piecewise-quintic Hermite interpolant to values and
first and second derivatives sampled from a univariate potential.
{Allen and Tildesley [ 1] deem this a *‘spline fit,”” but the method
is strictly local in natore and hence cannot yield the global
smoothness properties of true spline functions, see Section 3
below. Note also that Hermite interpolation to higher-order
derivatives of a function on a given interval does not always
yield better approximations to that function.)

As noted above, the approximation of trivariate potentials is
important in handling the convergent series that arises when
vsing the Ewald method for the one-component plasma. The
pioneering study of Brush, Sahlin, and Teller | 14] used a crude
three-dimensional Taylor expansion to approximate this term.
Hansen [13) obtained greater accuracy by means of an “‘opti-
mized expansion in Kubic harmonics.”” Further enhancements
were subsequently achieved by DeWitt and Hubbard [21] with
interpolation between values in a three-dimensional table, and
by Slattery, Doolen, and DeWitt [22] with a least-squares fit
to an expansion in cubic harmonics of degree 22,

Finally, Helfer, McCrory, and Van Horn [23] appear to have
attained even greater accuracy using a scheme to locally interpo-
late values and certain second derivatives of the function ®(r) —
1/r on a three-dimensional grid. Again, this so-called *‘modified
cubic spline interpolation formula’’ is not a true spline function.
In fact, it would appear to have discontinuous first derivatives
across the boundaries of the cubical elements in the subdivision
(the method is difficult to fully fathom since the authors provide
few details and there are several confusing typographical er-
rors). While this artifact may not be important in Monte Carlo
calculations, it is undesirable in dynamical simulations, since
particles would experience discontinuous force fields.

We believe that—depending on the availabie memory and
certain trade-offs between the speed of evaluation and the vol-
ume of stored data—spline functions are capable of matching
or exceeding the performance of any of the above methods in
terms of accuracy of approximation, ease of construction, and
efficiency of evaluation. Such functions are, moreover, guite
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versatile; the same code can be used to construct approximants
to the periodic-boundary correction term for a variety of poten-
tials. The input to the code is simply a set of values for the
correction term on a regular grid; the method need not rely on
derivatives of this term, which can be cumbersome to compute.
Another important attribute is the overall ‘‘smoothness’ of
spline functions (i.e., their tendency to suppress oscillations)
when the interpolated data is well behaved. While other ap-
proaches may also be capable of achieving a high approximation
accuracy, this does not per se guard against microscopic fluciu-
ations of the potential —which could, for example, induce spuri-
ous dynamics in condensed systems at [ow temperatures.

It will be convenient to exiract the n = 0 term from (])
and write

D(r) = Oolr) + D (r) = H(r) + 2 H(r+nL)), (4

®y(r) = H{r)ybeing the *‘basic’” pair potential under the standard
minimum image convention, while the ‘“‘correction’” term ®(r)
represents the potential for the interaction of one particle with all
periodic images of the other. Each compornent of the separation
vector r lies between —L/2 and +1/2.

We shall focus henceforth on the approximation of ®/(r)
only. This has the disadvantage, in a Monte Carlo or molecular
dynamics context, that the cost of including the effect of all
periodic images is in addirion to that of using the basic (mini-
mum-image) pair poiential. Since these two terms are cleanly
separated, however, one can readily assess the importance of
the ®(r) contribution in any simulation by switching it on
and off.

The decomposition (4} is motivated by the fact that &{(#) is
singular at + = 0 in many cases of interest, and inclusion of
this singularity complicates the direct approximation of d(r).
Even if a short-range cutoff is imposed, ®(r) typically has a
smaller overall variation than ®(r), making an accurate approxi-
mation of the former much easier. The Ewald potential (3} also
has the form ®y(») + &.(r), althongh in this case one should
nof interpret the spherically symmetric term ®qr) as a “*basic”
pair potential and the infinite sum @.(r) as the corresponding
effect of all image particles [14, 15].

3. CONSTRUCTION OF THE INTERPOLANT

While there are several excellent comprehensive treatises on
spline functions, e.g., [24-26], most ‘‘all-purpose’” numerical
analysis texts offer only a token discussion that is inadequate
for our purposes. Accordingly, we commence with a gentle
introduction to the construction and basic properties of splines,
in the specific context of approximating the function ®.(r), that
can serve as a point of departure for consulting the specialist
literature. To keep matters simple and concise without omitting
essential principles, we shall confine our attention 1o cubic
splines defined on uniform sequences of nodes or “‘knots.”’

FAROUKI AND» HAMAGUCHI

3.1. Univariate Interpolants

Beginning with the univariate case, consider the problem of
finding piecewise-polynomial functions that assume specified
values s, ..., s, at the integer points f = 1, ..., n and, furthermore,
have given derivatives s and s, at the initial and final points.
Clearly, there are infinitely many such functions, and—as noted
above-—the term “‘spline’” has often been loosely used to de-
note piecewise-polynomial functions in general.

If we impose the additional condition that the desired function
be of class C? {i.e., have continuous first and second denva-
tives), however, there is a unique piecewise-cubic S(r) that
matches the given data. Moreover, among all C* functions
Sf(r} interpolating the data, this piecewise-cubic is the one that
minimizes the integral

['ror a )

Itis only such functions—and their (tensor-product) generaliza-
tions to the multivariate case—that we shall henceforth refer
to as ‘‘splines’’ (for details on higher-order splines with greater
degrees of continuity, and splines defined over non-uniform
knot sequences, see [24-26]).

The idea is that, if [f'()] < 1 for 1 = t = n, the integral (5)
approximates the strain energy of an ‘‘elastica’ (i.e., a thin
elastic beam) that has been bent so as to pass through the points
(k, ) for k = 1, .., n and clamped at ¢+ = 1 and n so as to
assume slopes s, and s, at these endpoints (formally, the strain
energy is the integral of the square of the curvature

= (1 [

of the curve x = 1, y = f(#) with respect 1o arc length 5, where
ds/dt = (1 + f'"). Since $(r) minimizes the approximate
energy integral (5), it mimics the shape of an elastica—it is in
this sense that the spline may be regarded as the *‘smoothest’’
function interpolating the given data.

The construction of S(r) is not difficult. If $9(7) denotes the
ith span t € [i, { + 1] of 5(¢), considered as a function of the
local variable 7 = ¢ — i € [0, 1], we can express SY(7) in the
cubic Hermite basis as

SUTY = 5, 00(7) + Sy (D) + 5 Bo( D) + 55 BT, (B)

where s;, 53, are specified values for S(r) at the knots r = 4
i+ 1 and ¥/, 5, are the corresponding derivatives—as yet
unknown, apart from the given end values sy and s,. Here the
Hermite basis functions

o) =21~ 371+ 1,
Be(7)

a(n=—27+37%,

=272+ 71 BN=1 -7}
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are the unique cubic polynoinials that satisfy the boundary con-
ditions

(@(0) all) a0 a(H] oo
a0y a(l) a0 «ali) 01 00
BL0) B(1) B | |0 0 1 0
8O s gO go| L0

Writing each span of S(r) in the form (6) clearly guarantees
first-order continuity at the juncture of spans i and i + 1 for
i = 1,..,n — 2. To ensure second-order continuity, we must
match second derivatives at these nodes, On differentiating (6),
this gives rise to the system of linear equations

siopHdyl + 5 =38 852, =201, (T}
for the unknown derivatives s, ..., s5,_,. Together with the
specified values s| and s, this amounts to a tridiagonal system,
and solution of this systemn thus corresponds to a construction
of the desired spline function.

The spline described above, interpolating both a sequence
5|, ... 5, Of values and end-derivatives s; and s, is known as
a “‘complete’” spline. If the end-derivatives are unknown or
difficult to compute, however, one will have fewer equations
than unknowns. Methods Tor automatically selecting si, s, val-
ues that agree with the overall “*shape’” of the data s;, ..., s,
are then needed (the so-called “*natural’” spline, defined by
setting S$”(1) = §"(n) = 0, does not give very satisfactory results
in general).

We describe two such methods, known as spline end condi-
tions:

* guadratic end-spans. Instead of specifying s/ and s, values,
we ciose the systemn (7) by requiring $"(r) = 0 for ¢t € [1, 2]
and [n — 1, n], i.e., the initial and final spans are just guadratic
polynoinials. Equations (7) are thus augmented by

si+ 5 =28 —85)

Saor 50 = 2(5, — 521,

giving altogether a tridiagonal system of » equations.

* “‘not-g-knot’’ condition. Here we require third-order conti-
nuity at the knots t = 2 and n — 1, i.e., asingle cubic polynomial
is used for the first two and the last two spans. Equating third
derivatives at the junctures 7 = 2 and n — 1 gives

$3— 85 =285 — 45, + 25y

¥ L —_ 3
Sp T Sz T 2Sri*2 - 4511—] T 25"'
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In order not to compromise the tridiagonal nature of the system
(7), we add the first of the above equations to member i = 2
of that system, and subtract the second from member i = n —
1, thereby obtaining

I

453 + 25y = — 5, — 45, + 55,

N

25":—1 + 451:—I "SSH—Z + 45::4 + 5.
Once the new tridiagonal system of n — 2 equations has been
solved for s1, ..., 5, we may complete the solution by setting

S'|’ = S; - 23'] + 481 — 253

Vot . _ )
Su = Sp-2 + 2‘31:*2 4sn—l + 25»'

Another end condition, appropriate to periodic splines, is to
match first and second derivatives at ¢+ = n with those at ¢ =
1 (the equations to be solved are then no longer tridiagonal).
Here the function S{f)—defined nominally over ¢ € [1, n]—
is imagined to be periodic, being repeated indefinitely outside
this interval. This might seem to be the appropriate choice
for our present application, since the effective potential (1) is
evidently periodic in each coordinate. However, for reasons
given in Section 2, we want to approximate not the ful] effective
potential ®(r), but rather the quantity $(r) of equation (4),
with the n = 0 term missing, which is ror a periodic function.

3.2. THE CARDINAL BASIS

The above construction was specific to a given set of values
§i, ..., 5, at the nodes ¢ = 1, ..., #» and end-derivatives s/, s, or
“end conditions.”” If several different sets of values are to be
interpolated, or if one desires to interpolate values on a uniform
array of nodes in more than one dimension, a somewhat differ-
ent approach is recommended.

The complete splines that interpolate arbitrary values s, ...,
s, and end-derivatives s, s, constitute a vector space of dimen-
sion n + 2 that may be spanned by any set of n + 2 linearly
independent spline basis functions. In Section 4 we discuss
perhaps the most fundamental basis, namely, the B-spline basis.
For the moment, however, we wish to consider the basis that
1s best suited to interpelation problems: the cardinal basis.'

For i = 1, ..., n the ith cardinal basis functiod C,(f} is simply
the complete spline, constructed as described above, that has
end-derivatives C (1) = C](n) = 0 and interpolates the values

b=
C(jr=ag;= { (8)

0 otherwise

' We adopt this nomenclature following Ahlberg et af. [24], whereas de
Boor [25] and others use “‘cardinal’” to denote any spline that is defined on
a yniform sequence of knots.
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for j = 1, ..., m; i.e., It vanishes at every node except t = i,
where it has the value unity. Two additional basis functions
are needed, Cyi#) and C,4 (), which satisty Cy(1) = Copy(n) =
1 and Cy(sy = C,, (1) = 0, but vanish at every knott =1, ...,
n. Thus, any commplete spline may clearly be expressed as

w+!

S(n = 2 s5;CA,  where s, = 51, 5,41 = 51,

i=0

A cardinai basis with built-in end conditions may also be
defined. Here, one dispenses with Cy#) and C,,(r), while the
basis functions C{¢) for i = 1, .., n again interpolate the values
(8), but incorporating the desired end conditions {see Section
3.1 above) rather than setting C;(1) = C/(n) = 0. Any spline
satisfying the specified end conditions and interpolating given
values sy, ..., 5, at t = 1, ..., n may then be immediately identi-
fied as

"

5 = 2. s.C.

{The above form is the spline analog of the perhaps-familiar
expression for the polyromial interpolant P(r), of degree n —
1, to the values s, ..., 5.°

» n

P(ty = sL{n, where Lty =] il )

i=1 P
J#i
in terms of the Lagrange basis L(#), ..., L,(r) for the nodes

t=1,..,#1)

3.3. Trivariate Interpolants as Tensor Products

The above methods generalize directly to the smooth interpo-
lation of data on uniform rectangular grids of arbitrary dimen-
sion. While the bivariate case is the simplest context in which
to discuss this, we shall address the trivariate case here, since
the periodic-boundary correction term d(r) that we wish to
approximate is explicitly three dimensional.

Let @y, 1 <4, j, k = n, be a regular cubical grid of values
for the function ®.(r) defined in Eq. (4), obtained within a
prescribed tolerance by direct summation. In view of the cubical
symmetry of ®.(r), it suffices to sample values in the octant
x, ¥, z € [0, Li2] of the control volume. Also, it will be
convenient to transform the physical coordinates x = (i - 1)
A,y = (j— DA, z = (k — 1A of the sample points, where
A = L/2(n ~ 1), into the nonnegative integer triplets (i, j, k)
forl =i, k=n

We now consider an extended data set, @, for 0 = i, j,
k= n + 1, that includes certain boundary derivatives, defined
as follows. If i = O or n + 1, the quantity @, will represent
the partial derivative

FARQUKI AND HAMAGUCHI

a P, P,
= or —

ax ax

(rnzi=tLib (xx2)=tmgh

of @, with respect to x, and iikewise for the indices j, k and
coordinates y, z. Similatly, if two or more indices 7, j, & are
equal to 0 or » + 1, then ®,; denctes the appropriate second
or third mixed derivative of ®,(r) at the indicated boundary
point. Thus, the additional data that we specify amounts to:

+ the values of the first derivatives ad_/ox, o®./dy, and 3D/
dz, at each of the »* grid points on the two control-volume
faces parallel to the y — z, z — x, and x — y planes, respectively;

» the values of the mixed second derivatives #*®./dxdy,
2. /dydz, and 37D J3z3x, ar each of the » grid points on the
four control-volume edges parallel to the z, x, and y axes, respec-
tively; '

* and the values of the mixed third derivative #°® /dxdvdz
at each of the eight corners of the control volume.

There exists a wunique trivariate piecewise-polynomial func-
tion S(x, y, ) interpolating the extended data Py for 0 = 4, J,
k = n + 1 that is cubic in each variable and of class C% (i.e.,
all its partial derivatives of order =6 that involve no more
than twofold differentiation with respect to each coordinate are
continuous). Indeed, in terms of the complete univariate
cardinal basis Cq(1), ..., C,+:(f) defined above, this spline func-
tion may be immediately identified as

n+} omtb st

Sy, 2 =2 2 2 DLCDCANCLD). C)

=0 j=0 k=0

Furthermore, among aff trivariate functions f(x, y, z) that inter-
polate the given data and are of class (%, the complete tensor-
product spline nterpolant (9) is the one that minimizes the
quantity [24]:

(1]t savae a0

The above integral may be regarded as a measure of *‘smooth-
ness’” for the hypersurface passing through given points (i, j,
k, ®4) in a Euclidean space of dimension 4, although the
physical analog with the strain energy of such a hypersurface
is somewhat more tenous than in the univariate case.

In order to obtain the boundary derivative data for the term

P (r) = ;ﬂ ®([r + nLh

needed by the complete spline interpolant (9), we write the
derivatives of the pair potential ¢ with respect to its argument
as @', @, ¢ and, for each n, we denote the direction cosines
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of the vector ¥ + nL by cos 6., cos 8, cos 6.. Then it is easily
verified, for example, that

LA ()=, ¢'(Ir + nL))cos b,
dx Ex !

o o, ¢'(je + nL))
oxdy (r)y= g;' [d) (Il‘ + nLI) W cos 6, cos 8,
AL ¢"(fr + nl))
dxdydz (0= ;} l:d) (Ir + i) =3 Ir 4+ nl
+3 (b(lr—-'_mgll cos A, cos 6. cos 6.,
Ir + nil :

with analogous expressions for the other first and mixed second
derivatives. For the Ewald potential (3), the quantity ®(r) is
not precisely of the above form, and it is slightly more laborious
to compute the desired derivatives.

Note that, to allow for the scaling of the sample-point coordi-
nates, the physical values for the derivatives of ®, given above
must be multiplied by appropriate powers of the sample interval
A before they are interpolated.

The computation of boundary derivative data can, of course,
be omitted (at the cost of some degradatton in the approxima-
tion accuracy: see Section 3 below) by using a cardinal basis
Ci(1), ..., C,(1) with built-in end conditions. For such a basis,

A "

Sx vy =, 2. O, CNCANCLD)

=1 j=] k=

gives an interpolant to just the values ¢y, for 1 < i, j, k =< n of
&@_(r) on a cubical grid. The end conditions at t = 1, representing
points on midplanes of the simulation volume, should be
Ci(1) = 0, since the symmetric distribution of image particles
about such planes gives an exact cancellation of the normal
force due to them. At ¢ = n, representing points on faces of
the simulation volume, we have no equivalent information, and
quadratic end spans or the ‘‘not-a-knot”” condition must suffice.

We conclude this section by noting that, in view of the
cubical symmetry of (9), it is not necessary to compute or store
all (n + 2)* of the valves ® for 0 < i, j, k =n *+ 1. In fact,
the tetrahedral array defined by

C=k=j=i=n+1
contains all the distinct values that we need, which number

(n+ 2)n+ 3)n+4)

=050 =0 6

M )
M%.
"

in total. We can store only the distinct values in a linear
array, with
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m=%ii+ DE+D)+3iG D+ kI

being the approximate index into this array when arbitrary
indices i, j, k are permuted so that { = j = k.

4. CONVERSION TO B-SPLINE FORM

While the cardinai form (9) facilitated a simple construction
of the spine approximant to P (r), it is not useful as a representa-
tion for simulations in which this approximant will be repeat-
edly evaluated. Other than at the grid points, (» -+ 2)" nonzero
terms evidently contribute to the value of the sum (9), and as
n is increased to suppress the approximation error. the evalua-
tion cost would become prohibitive,

As noted in Sectien 3, the complete splines on a given se-
quence of knots admit representations in many different bases.
We will now convert (9) to a form that admits efficient evalua-
tion, at a cost that is independent of the number of knots. The
distinguishing feature of the B-spline basis By?), ..., B,.:(), in
which we wish to represent (9), is the compac! suppoert of the
basis functions, i.e., the fact that each is nonzero over only a
subset of the domain | = r = &, Thus, if we compute the B-
spline coefficients W, for S(x, y, z} and express it in the form

a+lntl atl

S(x,y,2) = 2 2 D WagBulx) Bol )B(2),

w=0 g=0 y=0

(11)

then for any (x, y, ) only a relatively small number of combina-
tions o, B, ¥ of the indices will contribute to the value of
Stx. v, 2).

4.1. The B-Spline Basis

To define a B-spline basis for the domain 1 < ¢ = n, the
knot sequence must be augmented by three initial knots at 1 =
-2, —1,0and three final knotsatt =n + l,n+ 2, n + 3.
For uniform knots, the B-spline basis is actually just a set of
translates of a unique nonnegative C? piecewise-cubic, B,(f)
say, which we may regard as being defined by the following
properties:

Oforr=a - 2andt= o + 2,
)= B x + 1) =¢and B o) =3

it

¢ B0
. Bd(a —

The above values are chosen to give ‘‘normalized’” B-splines,
for which

[CBawa=1
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NENE

cardinal basis

B-spline basis

FIG, 1. Comparison of the complete cardinal and B-spline bases on a
sequence of eleven uniformly spaced knots.

Figure | compares complete cardinal and B-spline bases over
uniform knots. From the specified values and continuity proper-
ties of B (r) we may deduce, in terms of the *‘local’’ variable
T =1 — , the explicit representation

(1 +2) for -2=r=—1I,
-3 6r+4 for—[=r1=0,

6 B, (1= 32— G+ 4 for0=r=1, (12)
(2 - 7 forl = r=<2,

It follows that for any {noninteger) ¢ between 1 and », exactly
four of the B-spline basis functions Bg(f), ..., B,(f) will be
nonzero. In particular, if @ <<t << & + 1, say, the nonvanishing
basts functions are B, (2}, B0, B\ (1), B,.»(t). At each knot,
however, there are only rhree nonvanishing basis functions; if

= @, say, they are B, (1), B(1), B ().

Thus, if we can convert the interpolant (9) to the B-spline
representation (11), there will be only 4° = 64 rather than
(n + 2)* nonzere coniributions to S{x, y, z) at an arbitrary point.
Even with the B-spline form, however, a careful analysis is
needed to formulate efficient procedures for evaluating S(x, y,
z). We will return to this matter in Section 4.3—for now we
focus on obtaining the B-spline coeftlicients W g, from the inter-
polated vaiues ®y. ’

We achieve this by neting that the complete cardinal splines
defined in Section 3.2 can be expressed as linear combinations
of B-splines:

afy

n+l

CH =D, ApBut) fori=0,..n+ L. (13)
a=0

Thus, by substituting the above into (9), the B-spline coeffi-
cients are seen 1o given by a threefold contraction of the array
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of interpolant values with the (n + 2) X (n + 2) basis conver-
sion matrix A having elements A,

#+1 atl ntl

\Paﬁy = 2 2 z (D,'jkA;,,AjﬁAky, 0= o, B, Y =<n+ 1. (14)

=0 =0 k=0

4.2, The Basis Conversion Matrix

The construction of the basis conversion matrix has a simple
formulation in terms of solving n + 2 systems of tridiagonal
equations. Noting that, at each node @ = 1, .., n, the only
nonzero B-splines have the values By{o) = § and B, (o) =
B, (@) = §, we obtain

Mg + AN, + Ay = 68,

ifl <i=n,

Ay T4A,+Asy =0 ifi=0o0rn+1,

in view of the known nodal values of the complete cardinal
basis functions. For fixed /, the above form an incomplete
tridiagonal system of » equations in n + 2 unknowns. To
complete the system, we match the derivatives of both sides
of (13) at r = I and + = n. From the form (i2) it is readily
verified that B{a) = 0 and —B,_(a) = B.. () = % Hence
we deduce that

Ai?. - AJO = 29 A-i,n+l - A-i.r:—l =0 ifi= 0,
Ap—Ap=0, Ay~ Ao =0 ifl=i=n,
AfZ - Am = 0, AI.H‘H - A,'n_| =2 fi=n+1.

Solving each of the n + 2 tridiagonal systems thus defined for
i =0, ..,n + 1 then gives all the elements of A and allows
the computation of the B-spline coefficients using (14). Again,
we take advantage of the cubical symmetry, computing and
storing only those values for which 0 <= y = 8 = o =
n+ 1 '

If a cardinal basis with buili-in end conditions has been used,
the matrix A will be of dimension n X (n + 2), since we
dispense with Cy(f) and C, ., (f). The systems of equations defin-
ing its entries are exactly as given before, except that members
reflecting these end conditions must be used instead of
Ci(ly=C/{n)y=0fori =1, .., n. Actually, for reasons stated
in Section 3.3, it is advisable to keep the equation A, — A
= { corresponding to €} (1) = 0, and for the other end condition
use either

Afﬂ+| - 3Ai'n + 3Ai.n*| - AI.H*Z =0

for a quadratic end span overr € [n — 1, 1), or
Ai.n+1 - 4'j\m + 6Af,n*l - 4Af,n*2 + Af,n*] = 0

for the not-a-knot condition with continuity of C/'(s) at + =
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FIG. 2. Computational graph for the de Boor algorithm. Given B-spline
coefficients b,-|, b,. Ber1, oy and the local variable 7 = 1 — «, each node
7" 1o be filled in is obtained by multiplying the values diagonally above by
ihe factors on the edges Yeading 1o that node and adding the results.

n — L. Both the above equations can be combined with other
members of the system, so as not to destroy its overall tridiago-
nal nature.

We conclude by noting that the values &, could, of course, be
directly interpolated using the representation (11). The resulting
system of linear equations is, however, quite cumbersome and
of much larger bandwidth. The basis-conversion approach that
we have taken is more transparent, simple to implement, and
numerically stable (it requires only a tridiagonal solver, and ail
the matrices involved are diagonally dominant).

4.3. Efficient Evalnation Procedures

Even after conversion from the cardinal form (9} to the B-
spling form (11), careful consideration must still be given as
to how the latter is evaluated. For potentials which require
inclusion of the periodic-correction term, it will usually be
necessary to explicitly take all pairwise interactions between
the N simulation particles into account. This means that the
evaluation of {11} will be done O(N?) times per simulation step.

The standard means of evaluating a univariate spline function

atl

S(n = 20 bB.(1) (15)

with given B-spline coefficients b, ..., b, is through a recursive
formula known as the de Boor algorithm. If we wish to evaluate
(15} at a point 7 such that & = r < o + 1, say, it can be verified
from (12) that S{#) reduces io

SO =8Byl — 7P+ b, (37 —67 +4) (16)

+by(=3T7 + 37+ 37+ )+ b7,

where 7 = + — . For the simple case of uniform knets, the
de Boor algorithm can be represented by the computational
graph shown in Fig. 2. Starting with the appropriate B-spline
coefficients b,_, b,, Pys1, bass, the values ***”’ to be filled in
at each level are obtained by multiplying the entries diagonally

283

above to the left and right by the factors on the edges leading
to those entries and adding the results. Dividing the final = by
6 then gives the value (16).

Given 7, the graph of Fig. 2 incurs 12 multiplications and
six additions (corresponding to the number of its edges and *
nodes). A further five additions are needed to form the quantities
3—7n2-11—r71 7+ 1,7+ 2 and one multiplication for
the final normalization; the total cost is thus 13 muluplies and
11 adds. This is rather high in view of the fact that we are
effectively just evaluating a cubic polynomial; if the power form

Coo F C T+ CoaT + CunT (7
of S(r) for t € {a, ¢ + 1] were available, it could be evaluated
at a quarter of the cost—just three multiplies and three adds—
by Horner’s method.

However, storing power coefiicients for each span of 5(r)
requires 4n — 1) memory locations, instead of just » + 2 for
the B-spline coefficients. The problem is even more severe for
the trivariate spline (11), where the (# + 2)° B-spline coeffi-
cients must he replaced by 64(n — ) power coefficients to
allow nested Horner evaluation (since S{x, v, z) is cubic in each
of three variables, it requires 4° = 64 power coefficients for
its specification within each of (n — 1)} cubical regions).
Allowing for symmetry reduces both these numbers by a factor
of ~6, but does not appreciably alter their relative magnitudes.

As the approximation error decreases roughly in proportion
to 17 (see Section 5) there is a fundamental trade-off between
accuracy and efficiency. For given memory, storing only the
B-spline coefficients allows n values ~4 times larger than if
pre-computed power coefficients ¢j; for each span are stored,
yielding an approximation error ~256 times smaller. However,
accepting the lower accuracy entailed by storage of the power
coefficients allows evalvation ~4 times faster than when only
the B-spline coefficients are known.

Since the coefficients of the local power form (17) are given
by multiplying the appropriate B-spline coefficients &,.,, b,
By+1s boyy by the matrix

1 10
-3 30

M= 3 6 3 ol
—1 3 -3

the power coefficients appropriate Lo each cubical span 1 = a,
B,y = n — 1 of the tensor product {11) are obtained by
threefold multiplication with M:

3

4 4
Cafyik — ,21 E HZ:[ Mi:‘Mijkn q’n+l’72.ﬂ+m—2‘y+n72 (18)

m=1

for 0 = i, j, k = 3. The local power form of (11) is then
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FIG. 3, The magnitude of the periodic-carrection term @, in the three
directions {1. 0, 0), {1, 4. D). and {1, ¥, 1). compuarcd with the “‘bare’” Yukawa
potential (dashed curve) for the case x = 0.25 and N = |28 (L/fa = 8.1).
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which may be rapidly evaluated using a nested Horner scheme.

if memory constraints allow only the B-spline coefficients
1o be stored, it is possible to improve slightly (in terms of total
arithmetic count, at least) on the algorithm illustrated in Fig.
2 for computing the value (16). With ¢ = | — 7, we may re-
write (16} in the form

S =%[bpmi’ + 3bo+ by D oT+ 1D
+ byt by + bu+273]!

which (including the formation of o and the final normalization)
requires just 12 -mwultiplies and seven adds for evaluation.
Whether this results in a discernible speedup, however, depends
in detail on the platform and implementation (the IBM RISC
System/6000 workstations, for example, are capable of execut-
ing a multiplication and an addition in a single machine cycle
[27] if the operands satisfy certain constraints).

In dynamical simulations, it is the force-field F, = —Vd,
corresponding to the periodic correction potential & that will
be frequently evaluated; considerations similar to those given
above apply to its efficient evaluation. (It is also usually neces-
sary to compute several higher derivatives of F. when starting
up the numerical integration scheme.)

5. EMPIRICAL RESULTS

The methods described above have been implemented and
tested using both the Yukawa potential (2) for charged particles
in a responsive neutralizing background, and the Ewald poten-
tial (3) for the one-component plasma. For brevity, we give
representative results for only the Yukawa system {(this has
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been used to model suspensions of small polystyrene spheres
in water, which exhibit phase transitions and other interesting
phenomena on scales that can be probed by visible light [28,
297,

For N particles in a cubical simulaticn volume of side L, the
Wigner—Seitz radius is defined by @ = (3/47N)"*L. For the
Yukawa potential (2), the dimensioniess quantity ¥ = &« mea-
sures the strength of particle interactions, while the magnitude
of kL = (47 N/3)"*k determines how rapidly the sum (1) con-
verges and how important the correction @.(r) is relative to
the “‘bare” Yukawa potential. The mintmuim image method is
valid only when kL > 1.

We use the case « = 0.25 and N = 128, for which kL = 2
and inclusion of the periodic correction term is thus essential,
to illustrate the performance of the spline approximation proce-
dure. Figure 3 compares the variation of ¢{r) and ®D{r) in this
case; note that the latter substantially exceeds the former except
near the center of the simulation volume. In Figure 4 we show,
in the (x, y) plane, the force fields that correspond to these terms.

For the complete spline interpolant to a uniform grid of
n X n X n values and the boundary derivative data enumerated
in Section 3.3, Fig. 5 shows measured root-mean-square and
maximum errors in the spline approximation to @, and its
associated gradient for various values of n. Here the data that

"bare” Yukawa field

TN LB E R R RN
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a
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»
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correction for periodic images

FIG. 4. Comparison of the “‘bare’” Yukawa force-field in the (x, y)-plane
with the correction due to periodic images. for the case x = 0.25 and N =
128. Note that thic latter exactly cancels the former at the center of each face
and edge, and at each vertex of the contrel volume.
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FIG. 5. Measured root-mean-square and maximum relative errors in the
spline approximation to the periodic correction ®.(r) and its corresponding
force field F.(r) = —Vdbr), for the case « = 0.25 and ¥ = 128.

is interpolated, and against which the approximation accuracy
1s tested, was obtained by direct summation to a relative error
of 107" or better.

To obtain measures representative of the fields experienced
by particles in a simulation, the data of Fig. 5 were based on
sampling at 10" randomly selected points. If the sum (1) is
carried sufficiently far in computing the interpolant values, the
error in the spline approximation to @, is essentially zero at
each node, but the gradient of the approximation will generally
have a nonzero error everywhere.

In Monte Carlo calculations only @, is of interest, whereas
in dynamical simulations the periodic-correction force field
F. = —V 4. is primarily used. While approximations to F. of
greater accuracy and an additional order of continvity could
be obtained by directly interpolating it componentwise, it is
preferable (e.g., for computing the system energy) to avoid
forces that are not explicitly derived from known potential func-
tions,

The decline of the approximation error with the number of
spling nodes # per dimension seen in Fig, 5 agrees well with
standard error estimates {25] for spline interpolation. In the
univariaie case, for example, it may be shown that the complete
spline S(#) interpolating # uniformly spaced vaiues of a function
f{Hyont € [0, 1] satsfies

max (1) — f(1] = 5 max( )

Ull

ﬁﬁ(

while the error in the first derivative of S(¢) may be character-
ized by
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max S (1) me~ ——y max| 0]

l)*

The weaker decay with » of the error in F, =
that in @, itself is clearly evident in Fig. 5.

As the computation of the boundary derivative data needed
by complete spline interpolants is somewhat cumbersome, espe-
cially for more complicated potentials, we have also tried inter-
polating just a grid of values for @, using cardinal bases with
built-in end conditions. Specifically, zero derivatives at x, v,
z = 0 and either quadratic end spans or the not-a-knot condition
at x, y, z = L/2 were used (as described in Section 3.3). In
each case, significant increases of the rms and maximum ap-
proximation errors were observed for both &, and V&, by a
factor of ~4 for the not-a-knot case and by about an order of
magnitude for quadratic end spans. Thus, the complete spline
is preferred for greatest accuracy, but if the derivative data is
difficult or impossible to compute, the not-a-knot condition will
give somewbhat better performance than quadratic end spans.

A comparison of the program speed under various strategies
for evaluating the correction term ®, was performed. When #
was not too large and the local power coefficients {18) could
be stored, allowing the evaluation of @, by a nested Horner
scheme, the run time was found to increase by a factor of ~3.7
as compared to cases wsing only the ““bare’” potential ¢. On a
small workstation with 16 Mbytes of memory, for example, a
25 X 25 % 25 mesh for the approximation could easily be
accommodated by this scheme (giving rms &, and ¥, errors
<2107 and 1078, respectively)} without paging problems.

If oniy the B-spline coefficients were stored, however, the
evaluation of ®, became intolerably slow—the program ran
about 30 times slower than the “‘bare’” ¢ case! This may,
perhaps, be partly attributable to our use of functien calls {rather
than in-line code) for nested execution of the de Boor algorithm.
Nevertheless, the latter requires about 4 times as much arithme-
tic per evaluation than Horner's method (see Section 4.3), and
a significant loss of speed was 10 be expected. Thus, relying
on the B-spline coefficients only is not recommended uniess
one wants to use all the available memory to obtain very high
accuracy in &, at the cost of a severe price in performance.
Note that even relatively coarse grids (e.g., n = 10) yield
approximations that are adequate for most purposes and that
make fairly modest demands (<20.5 Mbyte) on memory when
using the more-efficient evaluation scheme.

To illustrate the physical importance of the periodic correc-
tion term @, we constder the problem of determining the
asymptotic (N — «) melting temperature of a « = 0.5 Yukawa
system. If « is not large, the bec lattice is known io be the
stable form of the frozen Yukawa system. Our experiments
consist of integrating the equations of motion for N = 2v°
particles, placed initially at bece lattice sites (the integer v is
the number of conventional cells). Dynamical equilibrium at a
given temperature T is achieved by periodically renorinalizing

—Vib. than of
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FIG. 6. Mean internal energy per particle U as a function of I'! for a
sysiem of N = 10124 particles interacting through a ¥ = 0.5 Yukawa potential
with the periodic correction term included. A transition from crystalline to
fluid states is apparent as a jump in U at T',, = 92 {the dashed lines represent
least-squares fits to U for the solid and liquid phases).

the particle velocities {30]. In lieu of the temperature, we use
the dimensionless coupling parameter

Q% exp(—x)
Amgaa kg T

roughly equal to the ratio of mean potential to kinetic energy
per particle (Q is the charge on each particle, while g; and &,
are the permittivity of free space and the Boltzmann constant).
The Yukawa-system thermodynamics is completely describable
in terms of the quantities « and [

We wish to compare the dependence of the value I',, at which
the frozen Yukawa system melts on the number of particles N,
when using: (i} just the minimum image method and (ii) full
periodic boundary conditions based on the spline correction
term ®.(r). The phase transition is identified by a jump in the
equilibrium mean energy per particle,

N—-1

‘ N N
U= %[; bmv P+ ¥ Z, D(r; — r,)],

i .

=] =i

as [ is decreased. Figure 6 shows such values of {/, in units
of 0¥4meya, obtained from the simulations—these values rep-
resent time averages after an initial “‘setling’’ pertod. (The total
internal energy of the plasma/charged-particle system differs
from NU by only an additive constant.) With runs at many
different I" values, it is possible to isolate I',, to high accuracy.
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Figure 7 shows the observed dependence of the I, value on
N=2v'forv = 4, ..., 10. While I',, is seen to increase steadily
with N when using just the minimum image convention, it is
nearly constant when the @, term is included (excepting, pet-
haps, some residual small-number effects for v = 5). The [,
values based on the minimum image method are within ~10%
of the asymptotic value indicated by runs using the periodic
correction term only when & 2= 2000 (for which &L = 10).
Indeed, extrapolating the data shown in Fig. 7 suggests that,
to within the measurement error, the minimum-image I',, attains
the asymptotic value only for v = 12 (i.e,, N = 3456).

Previous simulations of Yukawa systems have focused
mostly on the large « regime, where the *‘minimum image’
method gives a reasonably adequate representation of periodic
boundary conditions. For example, Robbins ef al. {7] present
results for cases with k¥ = 1 (note that x and the parameter A
used in [7] are related by « = (3/4m)® A =~ 0.62 A). Since
they also truncate pairwise interactions at a cutoff radius r, =~
3a, the results in [7] probably have some systematic. error at
smaller k values. For the weak-screening regime x =< 1, one
certainly needs full periodic boundary conditions for quantita-
tive thermodynamic measurements representative of infinite
systems.

The results presented above are for illustrative purposes only;
accurate determinations of I', are based on finding the intersec-
tion of free energy curves for the solid and fluid phases {obtained
by fitting energy data from the simulations o appropriate func-
tional forms, e.g., as in |22] for the OCP).

6. CONCLUDING REMARKS

While periodic boundary conditions may incur nonphysical
constraints on the simulated dynamics of condensed systerns

number of particles
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FIG.7. Dependence of the observed melting point [, of a Yukawa sysiem

with x = 0.5 on the particle number & when: (a) the *‘minimum-image’”
convention only is used (open dots); and {b) the periodic correction term is
incorporated (solid dots).
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{31-34], they are still the best means of avoiding gross errors
due 1o “‘surface terms’’ when estimating intensive thermody-
namic properties by small-N Monte Carlo or molecular dynam-
ics calcuiations. We have described a general-purpose approxi-
mation scheme for incorporating full periodic boundary
conditions that may be used with a vartety of intermediate-
range pair potentials (for which the **minimum image’” method
would be unsatisfactory).

The accuracy of the periodic-boundary correction term is
limited only by the available memory for storing the spline
coefficients, and the speed of evaluation is essentially indepen-
ddent of the accuracy. For potentials such as those discussed in
Section |, relative approximation errors of 107" or better are
easily within the scope of modern scientific workstations,
allowing the quantitative study of dense “‘strongly coupled”
systems at low temperatures.

Although, for a given A, inclusion of the correction term
increases the computational cost by a constant factor, it should
be borne in mind that values for thermodynamic variables repre-
sentative of the N — oo limit are obtainabie with far smaller
particle numbers under full pertodic boundary conditions (ex-
cept tor short-range interactions). As shown in Section 5 above,
when using full periodic boundary conditions, physically mean-
ingful results may be observed with N an order of magnitude
or more simaller than the minimum-image method requires.
Since the run time is proportional 1o &, the scheme proposed
above amounts to a significant enhancement in the speed with
which physical data of a prescribed quality can be deduced
from simulations.
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